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Abstract – The core problem for networked systems for 
underwater surveillance revolves around the 
requirement to blend information from different sensors 
and platforms into a common operating picture.  Data 
fusion of disparate data types can be problematic given 
the variety of potential surveillance systems in the 
network.  Active and passive sonar in particular provide 
different data types with different accuracies.  The 
acoustic environment is highly stochastic and errors are 
prevalent that can be promulgated throughout the 
system.  An evolutionary algorithm approach for fusing 
active and passive sonar contact information is used to 
explore the issue of robustness when large contact 
errors prevail from multiple platforms.  The algorithm 
may have the ability to recover from erroneous input at 
the expense of lower track accuracy.  This may have a 
significant utility as an operator aid for construction of 
the global picture of fused active and passive data.  A 
multitude of erroneous sources can still result in higher 
overall track errors and further research is required; 
however, the evolutionary approach may still provide 
significant benefit. 
 
Keywords: Tracking, evolutionary algorithms, active and 
passive data fusion. 
 

1 Introduction 
 
Networked underwater warfare offers a significant 
potential for enhancement of the ability of underwater 
surveillance systems to detect and classify both 
underwater and surface contacts.  Numerous sensors and 
platforms offer greater potential for minimizing the errors 
associated with contacts that are caused by the high 
variability of the acoustic environment.  From an 
operations research perspective, studies have shown that 
this variability makes determination of the exact positions 
of contacts an almost impossible task in some conditions, 
and a stochastic approach is usually the only way of 
providing performance predictions of sonar systems. 
 
Given the large variance in expected errors produced by 
sensors, the problem of combining the information from 
different surveillance platforms into one common 
operating picture is a challenging task.  This task is 
complicated further by the use of different sensors having 

different characteristics and outputs.  At any given time 
the accuracy of the information obtained from one sensor 
may be more accurate or considerably worse than another 
sensor, but discrimination of which sensor is providing 
contact information closer to the “ground truth”, or the 
actual contact’s motion vector is difficult due to this 
variability. 
 
For active and passive sonar in particular, active data has 
the ability to provide both a range and bearing to a 
contact.  Passive data, on the other hand, only provides 
bearing information.  It is often assumed that the active 
contact data will be most accurate, yet many cases can be 
cited where this was not the case, particularly in a high 
clutter environment where many false returns are 
obtained from bottom features or other anomalies.  In 
these circumstances passive contact data may provide 
more reliable information but may be more difficult to 
obtain.    
 
One approach to overcoming many of the obstacles 
associated with data fusion is simply to construct a 
graphical user interface that presents all the current data 
as icons to the operator.  The operator can process the 
information and judge what contact information is 
accurate and based on historical data determine by 
observation where the target is most likely to be given the 
latest data.  Another approach is to devise automatic 
tracking algorithms that provide cues as a decision aid for 
the operator.  Tracking algorithms have a history of use. 
 
1.1 Evolutionary Algorithms for Tracking 
 
The use of evolutionary or genetic algorithms for tracking 
is not without precedent.  Recently at DRDC Atlantic 
some work was conducted on a genetic algorithm tracker 
given active contact data only [1].   
 
The ability of genetic algorithms to provide robust 
solutions for global optimization is well documented.  
Genetic algorithms (GA) have been used for numerous 
types of engineering optimization problems [2].  Genetic 
algorithms have been used in different ways for data 
fusion problems including the optimization of parameters 
for tracking algorithms and optimization of the bandwidth 
for selection of a priori observations.  However, in 
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general, algorithms for tracking algorithms have focused 
more on using Kalman filters and associated methods for 
conducting TMA.  
 
The tracking algorithm problem is only one issue 
concerning production of a data fusion generated 
Common Operating Picture (COP) with respect to multi-
sensor multi-platform networks.  From a purely physics 
based perspective, the sharing of contact data between 
platforms that are only using a 2-D co-ordinate system 
vice a 3-D system leads to errors that are promulgated 
through the network [3].  Issues concerning human 
factors and “vigilance decrement” associated with 
operators spending hours looking at sonograms are 
another area of potential error that has been examined by 
human factors experts [4]. 
 
However the biggest probable cause of error in acoustic 
contact reports lies with the environment.  Environment 
and geographical conditions in addition to oceanographic 
features lead to significant problems especially when 
operating in littoral environments.  On any given day 
environmental conditions can result in poor sensor 
performance.  
 
These operational issues lend even more importance to 
the ability of the networked system to be able to 
compensate for the multitude of errors imposed upon it 
during real operations.  For the generation of a COP, the 
quality, accuracy, and robustness of the system to deal 
with real operational problems becomes paramount, and a 
system that is put forward to conduct the processing for 
the COP must incorporate elements to reduce, mitigate or 
in some cases eliminate system input errors when the 
situation requires less fidelity rather than more. 
 
Using TMA programs can solve some but not all of these 
issues, as the case of garbage in/garbage out cannot be 
completely eradicated despite the best filters and the most 
precise techniques.  This means that the challenge to find 
tools to manage the data fusion process rather than by 
solving the tracking problem need to be more closely 
linked.  In the next sections, some examples are shown of 
the use of the evolutionary multi objective algorithm for 
doing one element of this process. 
 
The acoustic data fusion process and the elements of 
various data fusion sonar systems can be analyzed from a 
multi-sensor fusion or a multi sensor integration 
perspective.  It should be noted that different system 
characteristics may be considered multi-sensor and more 
distinguishing characteristics are required.  For example, 
from computer science homogenous and heterogeneous 
computer systems are one way of looking at the physical 
system components.  Topics on multi-sensor fusion have 
matured and textbooks are available [5].  This paper is 
concerned with the problem of dealing with gross errors 
in contact data and the use of a Multiple Objective 
Genetic Algorithm (MOGA) approach to the problem. 
 
 

2 Passive and Active Fusion 
 
The accepted definitions for passive and active sensors 
are generally well known but can be reiterated here.  The 
passive sensor is said to record information already 
present in its surroundings or environment while the 
active sensor initiates an action whose response results in 
information recorded by the sensor.  In other words, the 
active sensor introduces a disturbance, energy or new 
factor into the environment as a stimulus and checks the 
response, while the passive sensor measures the 
environment without changing it.   
 
These traits are also representative in general of acoustic 
sonar systems.  Division of sonar systems into passive 
and active present the designer with a range of options for 
sonar development that only became obscured as sonars 
were developed that combine both active and passive 
sensors into one system. However, the differentiation 
between active and passive is still used almost universally 
as the action required by the sonar is either active or 
passive. 
 
While the current focus is on integration of active and 
passive sonar systems, development of underwater 
systems that use information from non-acoustic sensors is 
also being explored. 
 
With all these systems, the integration of sensor 
information into one data structure is a common 
requirement.  These systems are mostly still within the 
realm of a homogenous system despite the different 
sensors involved because the systems are developed with 
this purpose as part of their design.  In the case of the 
networked underwater surveillance system, the use of 
multiple platforms, as well as multiple sensors means that 
system architecture and system characteristics are no 
longer uniform and this type of system is more 
heterogeneous.   
 
Figure 1 shows a picture of the networked underwater 
warfare concept.  In the figure are representative 
platforms including aircraft, surface ships and 
submarines.  Each type of platform has a different sensor 
system albeit active or passive acoustic sonar.  Producing 
a COP from these disparate types of sensors is difficult 
and complicated by the fact that each system has a 
different availability, reliability and accuracy.  The 
information data exchange requirements and the project 
outline is described in various other references [6,7]. 
  
 



  

In addition, the MOGA should be informed as to whether 
a new track is required or whether a track is being 
updated.  A new track means the MOGA starts with a 
new randomly generated initial population.  Except for 
the first contact where a new population must be 
generated, all of the cases presented start with the 
population generated after assessing the last contact.  

 
Figure 1: Networked Underwater Warfare Concept 

 

3  MOGA Methodology 
 
The algorithm used in the current study is based upon a 
form of MOGA that does not require a definition of 
Pareto optimality.  Normally, a two-objective function 
will require some form of compromise between the 
objectives and as such a reduction in one objective leads 
to an increase in the other objective and vice versa.  Such 
types of multiple objective functions lead to a definition 
of a Pareto front derived from non-dominated solutions 
[2].  
 
The current algorithm still requires a definition of 
optimality to be able to output the current optimum, 
however, the algorithm itself is not based directly of the 
selection of optimal candidates based on non-dominated 
solutions.  In this case the algorithm is said to be of a 
compromised or preferred solution rather than a 
technique to derive all non-dominated solutions.  The 
current algorithm is quite effective in determining non-
dominated solutions, however, the primary assumption is 
that the best solution is one that is best or nearly optimal 
in all objectives. 
 
The algorithm is called the Sequential Objective 
Evolutionary Algorithm (SOEA) and was originally 
developed for hull form optimization of ships [8].  It has 
been applied to a number of other applications.  The 
current application represents an attempt to use the 
characteristics of genetic algorithms to maintain a 
possible population of solutions that are updated as sonar 
contacts are received.  The program works as follows.  
For a given initial number of ships and submarines, tracks 
are randomly generated which are, for the purposes of the 
current application, straight-line tracks.  During the 
duration of the tracks, contacts are randomly generated 
from each platform against the target.  Contacts can be 
either passive or active and are again randomly generated. 
 
The contacts are then evaluated by the MOGA.  The 
MOGA maintains a population of 100 initial solutions.  
The probability for cross-over was set at 0.8 and the 
mutation probability was set at 0.001, though these 

parameters as for most MOGA programs can be adjusted 
by trial and error.  For each time step, if there is a contact 
by a platform the algorithm is called.  The algorithm uses 
as input the “ownship” position that is the position of the 
platform that has the contact, and also either the estimated 
x and y position of the contact or the bearing to the 
contact.  The x and y positional information represents an 
active contact, while the bearing only information 
represents a passive contact.   
 

 
The MOGA is run for 1000 generations.  While running, 
the first objective to be evaluated is to minimize the error 
from solutions in the population between the bearings 
generated from the ownship to the contact. Those 
members of the population that have a minimal error in 
bearing are considered more optimal than those that have 
larger bearing errors. 
 
If the contact is active, then the range between the 
estimated contact position and the member of the 
population is used as a measure of the error in track 
versus contact position.  This objective represents the 
minimization of the active position error.  As previously 
mentioned the same population is used in both active and 
passive cases.   
 
In addition to minimization of the contact error, the next 
objective to be evaluated is to minimize the position of 
the GA population and the expected position.  The 
expected position is the one generated from a vector 
produced from two previous optimal solutions.  A 
diagram of the algorithm is shown in Figure 2.   
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Figure 2: MOGA Algorithm 
 



4  MOGA Results 
 
In this section some results of using the MOGA approach 
for tracking active and passive sonar contacts are shown.  
It should be emphasized that the point of using this 
method is not necessarily to obtain a better tracking 
solution, but to investigate whether a more robust method 
can be found that can accommodate large errors in track 
data.  That is, the goal is to be able to use both active and 
passive data when the data is both corrupt, error prone 
and completely false as well as when contacts are 
accurate. 
 
For the case of a single ship versus a single target, in 
which the ship has both a mixture of active and passive 
contacts, the population of solutions generated by the 
MOGA are shown in Figure 3.  The contact data is error 
free and is represented for passive bearings by end-points 
in the direction of the contact from the ship position to 
simplify the illustration.  The active contacts are given by 
X’s centred over the submarine track.  As can be seen by 
the GA solutions at each time step represented by the 
circles, the accuracy of individual points from the GA 
solution vary somewhat, but the optimal solutions for the 
track positions centre around the target. 

 
Figure 3: Single Ship vs. One Target, No Contacts Errors 
 
For the case where there are passive contact errors by the 
addition of a +/- 10% bearing error in addition to active 
contact error of +/- 10% range error, the results of using 
the GA tracker are shown in Figure 4.  In this case, the 
track results are less accurate but still in the region of the 
submarine track. 
 
It should be noted that the track is not a continuous track 
but a series of optimal position estimates as provided by 
the algorithm when given either a new active contact or a 
new bearing update.  This differs from the definition of a 
track requiring a target position as well as a target velocity 
and heading.  In this case the track estimate is in reality a 
series of updated contact positions and not a “track” in the 
true sense. 

 
 
    
 
 

Single Ship versus Single Target With Contact Errors
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Figure 4: Single Ship vs. One Target with Contact Errors 
 
With regard to two ships, a similar situation exists if the 
contact data has no error as shown in Figure 5.   In this 
case there is more variance in the track rather than the 
expected higher accuracy given by two ships reports as 
the solution tries to find the best position according to the 
contacts from first one and then the other platform. The 
GA track is near the actual track but is not entirely 
accurate and some anomalies are observed.  Nevertheless, 
the two types of both active and passive data are being 
incorporated into one COP of contacts by minimizing the 
difference associated with the population members and 
the contact data from two platforms as well as to types of 
sensors resulting in a multi-platform, multi-sensor data 
fusion.  
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Two Ships versus Single Target Without Contact Errors 
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 Figure 5: Two Ships vs. One Target, No Contacts Errors 
 



For the case of two ships in which there are contact errors 
for both the passive and active contacts, the results of 
using the GA approach are shown in Figure 6.  The series 
of track contacts are shown to be in the region of the 
submarine track despite the errors that are introduced by 
both the passive bearings and the active contacts from 
both platforms.  It should be noted that these errors are 
randomly generated within the accuracies prescribed 
whereas most errors would be Gaussian distributed and 
less inaccurate.  
 

 
Figure 6: Two Ships vs. One Target, with Contacts Errors 
 
While the previous two cases of single platform multi- 
sensor error and multi-platform error were randomly 
generated, these errors are relative to the actual submarine 
position.  The addition of false contacts or “clutter” is not 
based on the submarine position.  False contacts form a 
large part of the errors associated with real trials.  As 
previously mentioned, dealing with false contacts is a 
difficult problem from the perspective of how a tracking 
algorithm can provide a robust solution despite the 
addition of large errors due to invalid contacts. 
 
An initial approach to dealing with false contacts is to 
simply filter outliers and not use the false contact data in 
the first place.  While this approach has obvious merit, it 
assumes that false contacts will be correctly classified 
despite the fact that the false contacts may in fact be true 
contacts while the track being generated may indeed be 
false.  This difficulty with discrimination of input is not 
easily justified and reliance of operator experience is 
often used to discard unwanted tracks and false data.    
 
In addition to the errors associated with the sensor 
accuracies, a number of intermittent false contacts are 
introduced.  False contacts are generated such that 
approximately 10% of the contacts are invalid.  These are 
uniformly distributed within the operating region and can 
either be false active contacts, or invalid passive bearings. 
As shown in Figure 7, although there are obvious 
anomalies where the estimated track position corresponds 

with a false active contact, the majority of contacts 
remain close to the submarine track. 

Single Ship versus Single Target With Sensor Error and False Contacts 
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Two Ships versus Single Target With Contact Errors
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Figure 7: One Ship vs. One Target with 10% False 
Contacts 

 
 
This is also shown for the case of two ships versus 1 
target in Figure 8.  For the situation where there is an 
increasing amount of error and an increasing amount of 
false contacts or clutter, the track starts to show more 
anomalies.  For example, Figure 10 shows the situation 
when 50% of the contacts are false. 
 
 

Two Ships versus Single Target With Sensor Errors and 10% False Contacts
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Figure 8: Two Ships vs. One Target with False Contacts 
 
 
Although it is apparent that the increase in clutter has 
made the picture more confused, in fact the estimated 
contact optimal position results shown in Figure 8 clearly 
indicates where the submarine track is more likely to be.  
At this point, Kalman filters or other techniques to 
estimate of the most likely position of the target could be 
utilized to produce a track from the optimal position 
estimates provided by the MOGA algorithm. 



 
Figure 9: Two Ships vs. One Target - 50% False Contacts  
 
One way to improve the previous results from Figure 9 
could be to use a better method for predicting the 
expected position.  As this is one of the objectives used in 
the MOGA for minimizing the error between the 
population of solutions and the expected position, a more 
sophisticated method for predicting the expected position 
should lead to a better overall result.  The method used in 
the previous results calculates an expected position based 
on the last two known optimal results.  This means that 
large inaccuracies from one or both of the previous 
optimal results will be promulgated as an error in 
prediction of the next result.  This is mitigated somewhat 
by the actual contacts which lead the population back to a 
better prediction 
 
Using a least squares method to predict, for the case of a 
straight-line target, a linear best-fit equation based on the 
cumulative history of the optimal results leads to the 
results shown in Figure 10 for the previous two ship case.   
 

Figure 10: Two Ships vs. One Target- 50% False 
Contacts using a Linear Regression Estimator  

 

5 Conclusions 
 Two Ships versus Single Target With 50% Contact Errors
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A MOGA approach for conducting data fusion of active 
and passive contacts is presented.  As more errors are 
incorporated into contact data, robust methods are 
required that can deal with real system input.  For sonar 
contact data where high variability in the environment 
can produce large errors, the ability to maintain at least an 
indication of the target location is of significant 
operational benefit.   
 
The MOGA approach is able to indicate general target 
position.  Future work may compare with classical TMA 
techniques. The MOGA approach has proven useful in 
other types of applications requiring a robust 
methodology for global optimization.  The MOGA 
approach minimizes errors in passive bearing only and 
active positional data, as one means of producing a COP.  
Although a simple linear regression estimate for obtaining 
the expected position was tested, other techniques should 
be investigated further as a means of reducing anomalies 
in the track. 
 
The current study presents one way of using evolutionary 
algorithms for data fusion.  Future work would employ 
the methodology with real operational data rather than 
simulated.  The initial results indicate that this approach 
may be worth investigating as one means to augment 
TMA tools available to an operator. 
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